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SUMMARY

This paper presents a free-surface correction (FSC) method for solving laterally averaged, 2-D momen-
tum and continuity equations. The FSC method is a predictor–corrector scheme, in which an intermediate
free surface elevation is �rst calculated from the vertically integrated continuity equation after an in-
termediate, longitudinal velocity distribution is determined from the momentum equation. In the �nite
di�erence equation for the intermediate velocity, the vertical eddy viscosity term and the bottom- and
sidewall friction terms are discretized implicitly, while the pressure gradient term, convection terms,
and the horizontal eddy viscosity term are discretized explicitly. The intermediate free surface elevation
is then adjusted by solving a FSC equation before the intermediate velocity �eld is corrected.
The �nite di�erence scheme is simple and can be easily implemented in existing laterally averaged 2-D
models. It is unconditionally stable with respect to gravitational waves, shear stresses on the bottom
and side walls, and the vertical eddy viscosity term. It has been tested and validated with analytical
solutions and �eld data measured in a narrow, riverine estuary in southwest Florida. Model simulations
show that this numerical scheme is very e�cient and normally can be run with a Courant number larger
than 10. It can be used for rivers where the upstream bed elevation is higher than the downstream water
surface elevation without any problem. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In narrow rivers or estuaries, hydrodynamics often exhibit two-dimensional patterns. Flows
and water quality parameters vary in the vertical and the longitudinal directions but are
relatively homogeneous in the lateral direction. Under the hydrostatic pressure assumption,
the laterally averaged continuity, momentum, and transport equations in narrow rivers and

∗ Correspondence to: XinJian Chen, Surface Water Improvement & Management Program, Southwest Florida
Water Management District, 7601 Highway 301 North, Tampa, FL 33637, U.S.A.

† E-mail: xinjian.chen@swfwmd.state.�.us

Received 14 January 2002
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 12 November 2002



234 X. CHEN

estuaries are [1, 2]
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where x is the horizontal co-ordinate along the river/estuary, z is the vertical coordinate, u
and w denote velocity components in x- and z-directions, respectively; v is the lateral velocity
from lateral inputs (sheet �ow of direct runo�, tributary, etc.); b; p; g, and � denote the width,
pressure, gravitational acceleration, and the free surface elevation, respectively; �wx represents
the shear stress due to the friction acting on the side wall (=�Cwu[u2 +w2]1=2, where Cw is a
non-dimensional frictional coe�cient for side walls); Ah and Av are kinetic eddy viscosities in
the x- and z-directions, respectively; c represents concentration (salt or temperature); Bh and
Bv are eddy di�usivities in the x- and z-directions, respectively; and � is the density which
is a function of salinity and temperature.
Replacing p in Equation (2) with the right side of Equation (3) and using the Leibnitz

integration law, the horizontal pressure gradient in Equation (2) can be written as
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where �� represents density at the free surface. The �rst term on the right side of Equation
(5) is the barotropic pressure component, while the second term is the baroclinic pressure
component. Inserting Equation (5) into Equation (2) and using the Bousinnesq approximation,
one obtains
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Integrating Equation (1) over the water depth and considering the direct rainfall to the
water surface, the equation for the free surface is obtained as
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where h0 is the bottom elevation, r is the net rain intensity (rainfall minus evaporation) having
the same units as the velocity, and b� is the width of the river/estuary at the free surface.
Owing to the rapidly propagating surface gravity wave, the simulation time step in model

runs is often limited by the celerity of the surface gravity wave if the barotropic pressure
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component is discretized explicitly. For example, in a laterally averaged 2-D model developed
by Perrels and Karelse [3], the free surface is �rst calculated using the longitudinal velocity
from the previous time step before the horizontal momentum equation is solved. Although the
new free surface elevation is used in solving the horizontal momentum equation, a small time
step must be used, which is controlled by the Courant–Friedrichs–Levy (CFL) condition for
the gravity wave. According to the CFL condition, an explicit �nite di�erence scheme is only
stable when the celerity of the gravity wave is not larger than the ratio of the horizontal mesh
spacing �x to the time step �t, or Cgw6�x=�t, where Cgw(=

√
gD) is the celerity of the

gravity wave in shallow water, and D is the water depth. Let Cgw�t=�x be the Courant num-
ber (Cr) for gravity waves, the CFL condition for gravity waves is then equivalent to Cr61.
While the explicit treatment of gravity waves is usually the leading factor restricting the

time step size in model runs, explicit discretizations of the vertical eddy viscosity term,
the bottom shear stress and the sidewall shear stress are other important factors limiting the
time step. Because the bottom shear stress is used as the bottom boundary condition in the
vertical eddy viscosity term, it is not meaningful to discretize the vertical eddy viscosity term
implicitly and the bottom shear stress explicitly as in Reference [4].
This paper presents a free-surface correction (FSC) method for laterally averaged, 2-D

equations. In this method, numerical solutions to the momentum and continuity equations are
carried out with two steps. In the �rst step, an intermediate longitudinal velocity is computed
using the free surface at the last time step. An intermediate free surface is calculated from
Equation (7) using the intermediate velocity. In the second step, a free-surface correction
equation is solved to obtain the �nal free surface location, followed by the correction of the
intermediate velocity �eld. Based on the FSC method, a semi-implicit �nite di�erence scheme
is developed, which is unconditionally stable with respect to gravity waves, the vertical eddy
viscosity term, and shear stresses at the bottom and sidewalls. The numerical scheme was
tested and validated with analytical solutions and �eld data measured in a narrow, riverine
estuary in southwest Florida. Model simulations show that this numerical scheme is very
e�cient and can be normally run with a Courant number larger than 10. It can be applied to
rivers where the upstream bed elevation is higher than the downstream water surface elevation.

2. A SEMI-IMPLICIT SCHEME USING THE FSC METHOD

The Cartesian grid system in Figure 1 is used to develop a semi-implicit �nite di�erence
scheme for the laterally averaged momentum and mass conservation equations. In Figure 1,
i and k are indexes of grids in the longitudinal and vertical directions, respectively. With a
staggered arrangement of model variables, ui; k is de�ned at the centre of the right face of the
cell, while wi; k is de�ned at the centre of the top face. The density �i; k and pressure pi; k are
de�ned at the centre of the cell. The surface elevation (�i) and water depth (Di) are de�ned
at the centre of the horizontal grid.
The horizontal spacing �x varies only with i, while the layer thickness �� is constant for

the same k-index. To �t the bottom topography and the free surface, use �z to denote the
actual vertical spacing in the computation. Except for the bottom and top layers, �z is the
same as ��, the layer thickness. For the bottom layer, �z is the distance between the top of
the bottom layer and the real bottom. Similarly, for the top layer, �z is the distance between
the free surface and the bottom of the top layer. As a result, �z is generally not the same as
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Figure 1. A Cartesian grid system with a staggered arrangement of model variables for the laterally
averaged 2-D Model using the FSC method.

�� for the bottom layer and for the top layer. To ensure an adequate vertical resolution near
the free surface, the k-index for the top layer (km) is allowed to vary with horizontal location
and time. By doing so, the free surface can travel from one layer to another and there is
no need to use a thick top layer to cover the free-surface variation. At each time step, the
k-index for the top layer is calculated and saved. If �z of the top cell is less than one half
of the layer thickness, then this cell is aggregated to the cell below it. On the other hand, if
a top cell contains two � points at a new time step, it is split into two cells and the top one
is the new top cell at the new time step.
In the �rst step, an intermediate horizontal velocity is calculated with the explicit surface
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where �t is the time step used in the computation; the superscript n represents the previous
time step, while the superscript n + ∗ represents the intermediate solution at the new time
step; �n is the free surface location at the previous time step, and Hn

x is an explicit �nite
di�erence operator containing the convection terms, the baroclinic term and the horizontal
eddy viscosity term:
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In Equation (8) the vertical eddy viscosity term and the bottom and sidewall shear stresses
are discretized implicitly. The boundary conditions at the free surface and at the bottom are
speci�ed as [
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and [
Av
@un+

∗

@z

]
z=h0

=Cdunbu
n+∗
b (11)

where �� denotes the wind shear stress in the longitudinal direction, ub is the horizontal
velocity calculated at a level Zb near the bottom, and Cd is the bottom frictional coe�cient
and can be estimated by assuming a log-layer distribution of velocity for fully developed
turbulence

Cd =
[

�
ln(zb=z0)

]2
(12)

where � is the von Karman constant (0.41), z0 = ks=30, and ks is the bottom roughness.
For each i, Equation (8) is a tri-diagonal matrix system, which can be e�ciently solved us-

ing the Thomas Algorithm [5]. Once un+
∗
is determined, the intermediate vertical velocity and

the intermediate free surface can be computed by using Equations (1) and (7), respectively,
with the following �ux-based �nite di�erence forms:
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Where ��∗i (= �
n+∗
i − �ni ) is the increment in free surface elevation that is estimated from the

intermediate velocity �eld, or ��∗i is the di�erence between the intermediate free surface and
the free surface at the previous time step, kn and knm are, respectively, the bottom and top
k-indexes at the centre of the horizontal grid, and � is a model parameter varying between 0
and 1 (fully explicit for �=0 and fully implicit for �=1).
Equation (13) is simply an expression of mass conservation for each grid cell, while Equa-

tion (14) is an expression of mass conservation for each horizontal grid. The use of Equations
(13) and (14) ensures that the intermediate velocity �eld satis�es the mass conservation law.
In Equation (14)
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where kun and knum are, respectively, the bottom and top k-indexes at the right face of the
horizontal grid.
If one changes the superscript n+∗ to n+1, then the computation continues to the next time

step (time step n+2). However, the time step �t will be restricted by the CFL condition owing
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to the explicit treatment of the gravity wave. This limitation is not desirable. To eliminate this
time step restriction, a correction to the free surface needs to be conducted. This correction
is made in the second step of the FSC method.
The time step restriction by the CFL condition can be removed with the semi-implicit

discretization of the barotropic pressure component in the horizontal momentum equation as
follows:
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where un+1 is the �nal velocity in the x-direction at the new time instant.
Subtracting Equation (8) from Equation (16), one obtains a velocity correction equation
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Integrating Equation (17) over the water column and applying the same boundary conditions
speci�ed in Equations (10) and (11) for the �nal velocity �eld, one obtains
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where Ai+1=2 is the cross-section area at the right face of the horizontal grid (the sum of
wetted areas of right faces for grid cells with the horizontal grid index i). Inserting Equation
(18) into Equation (7) and considering Equation (14), one obtains
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where ��i(= �n+1i − �ni ) is the �nal increment of the free surface over the time step �t.
Equation (19) says that to obtain the �nal free surface, the intermediate free surface must be
corrected by an amount that is equal to the right side of the equation. This is the source of
the name free-surface correction (FSC) method. Equation (19) can be re-arranged as follows:

−Rw��i−1 + (1 + Rw + Re)��i − Re��i+1 =��∗i (20)
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Equation (20) is a tri-diagonal system and can be solved by again using the Thomas Algo-
rithm. After the �nal free surface location is found, the �nal horizontal momentum equation
can be solved from the tri-diagonal system listed as Equation (17). The vertical velocity
�eld is then �nally calculated from the following �ux-based �nite di�erence equation that
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guarantees the mass conservation:
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In actual computation, however, there is no need to solve the tri-diagonal system given
by Equation (17). Notice that the vertical eddy viscosity term in Equation (17) disappears
in Equation (19). In other words, the eddy viscosity term in Equation (17) has no e�ect on
the derivation of Equations (19)–(20). This result occurs because the vertical integration of
Equation (17) cancels the shear stresses between adjacent horizontal layers, and the boundary
conditions at the free surface and the bottom are the same for both the �nal and intermediate
velocities. If the vertical eddy viscosity term is simply omitted, Equation (17) becomes

un+1i; k − un+∗
i; k

�t
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Using this equation, the same tri-diagonal system for the free surface correction, Equation
(20), will be derived. Because the right side of Equation (23) is not a function of z, the
velocity correction (un+1i; k − un+∗

i; k ) calculated from Equation (23) is independent of the z-co-
ordinate and has no vertical gradient. From Equation (23), the �nal horizontal velocity can
be calculated as follows:
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Obviously, the un+1i; k distribution expressed in Equation (24) satis�es Equation (17). From
Equation (24), it can be seen that un+1i; k is obtained by shifting the vertical distribution of
un+

∗
i; k with a displacement, which is negatively proportional to the horizontal gradient of free
surface change over the time step �t.
For the transport equation, the �nite di�erence equation is not directly derived from Equation

(4). Instead, a �ux-based �nite di�erence equation in the following form is used in the model
to calculate concentration with an implicit discretization of the vertical di�usion term
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where V is the volume of the cell, Fnxi+1=2; k and F
n
zi; k+1=2 are advective �uxes through the

right and top faces of the cell, Fn+1=2yi; k and Fn+1=2ri; k are �uxes from the tributaries and from

the atmosphere (Fn+1=2ri; k is always zero for cells other than the top cell), and anxi+1=2; k and
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anzi; k+1=2 are the areas of the right and top faces of the cell, respectively. Various numerical
schemes for the advection terms are available in the model, including the standard upwind
scheme, the central di�erencing, QUICK, and QUICKEST schemes as well as Roe’s super-
bee scheme.

3. IMPLEMENTATION OF THE SCHEME

The use of the Leibnitz integration law to separate pressure gradients into baroclinic and
barotropic terms in the last section facilitates the explanation of the FSC method and is not
needed in actual computation, because the baroclinic terms are explicitly discretized. There is
also no need to calculate the intermediate vertical velocities (wn+

∗
i; k ), because they have no role

in the calculations in the second step. The implementation of the two steps is straightforward
and has been done in a laterally averaged model for estuaries (LAMFE) previously developed
by the author [1, 2, 6]. The �rst fractional step of the FSC method includes the following sub-
steps:

(1) Calculate the hydrostatic pressure using Equation (3);
(2) Calculate horizontal pressure gradients;
(3) Calculate Ah and Av using a turbulent kinetic energy (TKE) model (Sheng and Vil-

laret [7], Chen [8]);
(4) Calculate Hx using Equation (9) with the exclusion of the baroclinic term;
(5) Solve Equation (8) with the Thomas Algorithm to get the intermediate horizontal

velocity (un+
∗
). The barotropic and baroclinic terms in Equation (8) are replaced with

horizontal pressure gradients calculated in sub-step (2);
(6) Calculate the intermediate free surface (or ��∗i ) using Equation (14).

In the second step of the FSC method, the following sub-steps are completed:

(1) Calculate Rw and Re using Equation (21) to form a tri-diagonal matrix system;
(2) Solve Equation (20) to obtain the �nal free surface location;
(3) Calculate the horizontal gradient of the �nal free-surface increment,
(4) Calculate the �nal horizontal velocities using Equation (24); and
(5) Calculate the �nal vertical velocities using Equation (22).

These sub-steps can be performed very quickly. Although the explicit discretization of the
barotropic term in the �rst step only allows a very small time step restricted by the celerity
of the gravitational wave, the correction of the free surface partially or totally eliminates this
time step restriction, depending on the choice of the implicitness parameter �. Following the
same procedure described in Reference [19], a stability analysis can be done and shows that
when � is greater or equal to 0.5, the FSC method is unconditionally stable with respect
to the gravitational wave. The numerical scheme is unconditionally stable with respect to
the vertical eddy viscosity term and bottom and side wall stresses, because these terms are
discretized implicitly in the �rst fractional step. While the restriction for the time step due to
the explicit treatment of the horizontal eddy viscosity terms is mild, the explicit treatment of
the convective terms requires that the time step not to exceed �x=|umax|. It should be pointed
out that although the FSC method is unconditionally stable with respect to the gravitational
wave when � is greater than 0.5, it is dissipative for �¿0:5. The highest dissipation occurs
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when �=1. To obtain model results that are non-dissipative, one has to use a � value of 0.5
(see Reference [20]).
The transport equation for salinity (or temperature) is solved after the �nal velocity �eld and

free surface elevation are calculated using the �ux-based �nite di�erence equation, Equation
(25). Because the advective terms are discretized explicitly in Equation (25), the time step
restriction for solving concentration is �t6�x=|umax|.

4. TEST OF THE SCHEME

The semi-implicit �nite di�erence scheme using the FSC method for laterally averaged 2-D
equations has been tested with a few analytical solutions, including seiche oscillations in a
rectangular basin and a right-angled triangular basin, co-oscillating waves in an open channel
with a constant depth and an open channel with a linearly variable depth, and tests of mass
conservation in an idealized estuary and a real estuary. Details of these model validations are
partially reported in Chen [9, 10]. Here only one test case is presented, a co-oscillating wave
in an open channel with a linearly variable depth. One end of the channel is closed, while
the other is open. The channel has a length (L) of 8km and a water depth (D) that decreases
linearly from 5 m at the open end to 1 m at the closed end. The boundary condition at the
open end is speci�ed by a small amplitude wave with the amplitude of 2 cm and the wave
period of one hour.
The analytical solution for this two-dimensional problem can be found in Lamb [11] and

Lynch and Gray [12]. It includes the following three components:

�= �i + �rx + �l (26)

where �i is the incident wave, and �rx and �l are re�ected waves along the channel and from
the closed end, respectively. The incident wave takes the following form [13, 14]:

�i = aei(�+!t) (27)

where i=
√−1, �= ∫ x

0 k dx, k=!=
√
gD, and a is the amplitude of the incident wave and can

be calculated from

a
√
gk= a0

√
gk0 (28)

where a0 is the incident wave amplitude at the open end of the channel. Waves re�ected
along the channel are described by

�rx=R(x)aei(�−!t) (29)

where R is the re�ection coe�cient, which, to the order of the bottom slope, is [14]:

R(x) ≈ −1
2

∫ x

0

[
d
dx
ln(kD)

]
e2i� dx (30)

The re�ected wave from the wall at the closed end is then

�l=[1− R(L)]aei(�−!t) (31)
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Figure 2. Comparison of simulated free surfaces with analytical solutions for a
co-oscillating wave in a channel with a slope of 1=2000. Solid lines are analytical

solutions, squares are simulated free surfaces at two points in time.

The LAMFE model was used to simulate this co-oscillating wave problem with a horizontal
grid size of �x=100m and a layer thickness of ��=0:5m. As mentioned before, the actual
vertical spacing (�z) used in the model is not necessarily the same as the layer thickness (��).
There are three options available in the model for the treatment of the bottom topography
[9, 10], including the full and partial cell options and a piecewise linear bottom. For a better
�t of the channel bottom, the piecewise linear bottom was used here. The model was run
from the cold start by assuming that the water in the basin is still at t=0. The time step
used is 180 s, which corresponds to a Courant number of 12.6. A total of 200 wave cycles
was simulated. The bottom and sidewall friction was set to zero for the model run. The eddy
viscosity terms were omitted. Model results show that dynamic steady state was normally
achieved after less than 15 cycles.
Figure 2 shows the comparison of simulated surface elevations with analytical solutions at

two points in time during the last wave cycle. The solid lines are analytical solutions, while
the symbols are numerical model results. It can be seen that the FSC method yielded very
good model results.

5. APPLICATION TO A NARROW ESTUARY

The numerical scheme presented here was applied to the Lower Ala�a River, a riverine
estuary in southwest Florida. As shown in Figure 3, the river is a tributary to Tampa Bay.
Generally, the river is meandering and narrow except for its most downstream 4 km where
it is wider and has a few islands. There are �ve United States Geological Survey (USGS)
continuous recording stations along the Ala�a River. Surface elevation and salinity data were
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Figure 3. Location of the Lower Ala�a River. The riverine estuary is a tributary to Tampa Bay in
southwest Florida. There are �ve USGS continuous recording stations along the river.

collected at 15-min intervals at the four downstream stations shown in Figure 3. While salinity
was measured at the top, middle and bottom layers at the most downstream station (Ala�a
River at Gibsonton), it was only measured at one depth at the Ala�a River near Gibsonton
station. At the Riverview and Bells Shoals Road stations, salinity was measured at the top
and bottom layers. Although measured surface elevation data show strong tidal variations at
the Bell Shoals Road station, water is fresh there for the entire water column. At the most
upstream station (Ala�a River at Lithia) located about 24 km upstream from the mouth, no
tidal signal can be detected and �ow was measured. Normally, tidal e�ects can be seen in
measured water elevation data at about 18km upstream from the mouth, although saline water
is usually limited only to the downstream 12 km.
The LAMFE model with the present semi-implicit scheme was applied to the entire reach

of 24 km from the mouth (Ala�a River at Gibsonton) to the USGS Ala�a River station at
Lithia. Measured data at the �ve locations shown in Figure 3 were used for the boundary
conditions and for calibrations=veri�cations. The horizontal grid size varies between 300 and
400 m, while the vertical spacing (��) varies between 0.3 and 1:6 m. Numbers of grids in
the x- and z-directions are 68 and 22, respectively. The time step used for the simulation is
�t=450 s, corresponding to a Courant number of 12.16 at the deepest area. The model was
run on a Pentium III single processor with a CPU of 933 MHz. About 20 min of CPU time
is required to complete a 450-day simulation of hydrodynamics and salt transport processes
in the river.
Figure 4 shows comparisons of simulated surface elevations with measured data at the three

USGS stations between the upstream and downstream boundaries. Comparisons of simulated
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Figure 4. Comparisons of simulated surface elevations with measured data
at three locations in the Ala�a River.

salinities with measured data at two layers at the Riverview station and one layer at the
station near Gibsonton are shown in Figure 5. While simulated surface elevations agree very
well with measured data, the agreement between simulated salinities and measured data is
reasonable, considering the fact that there are some uncertainties with model parameters and
the data used to drive the model, including measured data used for upstream and downstream
boundary conditions, rainfall, runo� from the watershed, and the bathymetry data. In Figure 4,
simulated surface elevations are almost the same as measured data and one has to zoom in
to see the di�erence between simulated and measured surface elevations (see the small insert
in Figure 4).
In order to see whether the time step (�t) and=or the grid size (�x and ��) would

a�ect model results, the LAMFE model was run using di�erent time steps and grid sizes. In
addition to the time step used in generating Figures 4 and 5 (�t=450s), the model was also
run using �t=60,120,180,240,300, and 360 s. The grid sizes (�x and ��) were reduced

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:233–247



FINITE DIFFERENCE SCHEME FOR FREE-SURFACE FLOWS 245

Time (Hrs after 0am, 5/10/1999)

S
al

in
it

y 
(p

p
t)

S
al

in
it

y 
(p

p
t)

S
al

in
it

y 
(p

p
t)

9768 9864 9960 10056 10152 10248 10344 10440 10536 10632 10728
0

4

8

12

16

20

24

28

32
Model Results at Riverview, Top
Data at Riverview, Top

Time (Hrs after 0am, 5/10/1999)

9768 9864 9960 10056 10152 10248 10344 10440 10536 10632 10728
0

4

8

12

16

20

24

28

32
Model Results at Riverview, Bottom
Data at Riverview, Bottom

Time (Hrs after 0am, 5/10/1999)
9768 9864 9960 10056 10152 10248 10344 10440 10536 10632 10728
0
4

8

12

16

20

24

28

32

36
Model Results near Gibsonton, Bottom
Data near Gibsonton,Bottom

Figure 5. Comparisons of simulated salinities with measured data at two locations in the Ala�a River.

to one half or one quarter of their original values. Model results of these model runs show
that simulated surface elevations always agree very well with measured data, indicating that
simulated surface elevation results do not depend on the time step and the grid size. For the
transport equation, however, simulated concentrations are dependent on the time step and the
grid size if a lower-order numerical scheme (e.g. the standard upwind scheme) is used for
the advection terms. As mentioned in Section 2, the LAMFE model has several options for
the advection terms, including some lower- and higher-order schemes. When a higher-order
scheme is used for the advection terms, simulated salinities only slightly depend on the time
step and the grid size.
Plates 1 and 2 show velocity and salinity distributions at a low tide and a high tide,

respectively. Because of the horizontal scale of the river is on the order of kilometers and
the vertical scale is on the order of meters, the vertical coordinates in Plates 1 and 2 have
been multiplied by 1000. Correspondingly, the vertical velocity component is also multiplied
by 1000. As can be seen from Plates 1 and 2, the upstream reach of the river is a sloping
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channel where the bottom elevation is higher than the downstream free surface elevation. Flow
in this portion of the river is not a�ected by the downstream tide and exhibits the typical
open channel �ow pattern, with the water surface and velocity almost parallel to the river
bottom. Unlike other laterally averaged 2-D models (e.g., References [4, 15–17]) that have to
simulate the sloping portion of the river separately either by splitting it into multiple smaller
segments or by using a sub-model speci�cally written for the sloping channel, the present
semi-implicit scheme can simulate this sloping channel just like the downstream portion of
the river without any problem. There is no need to separate the sloping channel from the tidal
reach of the river in the simulation.

6. CONCLUSIONS

A free-surface correction method for laterally averaged, two-dimensional, hydrodynamic and
salinity transport equations has been developed and can be used for narrow rivers and estuaries.
Using the FSC method, solutions to the momentum and continuity equations are sought in
two steps. In the �rst step, the intermediate velocity �eld and free surface are computed using
implicit discretizations of the vertical eddy viscosity term and the bottom and side wall shear
stresses but with explicit discretizations of the horizontal eddy viscosity term, the horizontal
pressure gradient term, and convection terms. To eliminate the time step restriction controlled
by the CFL condition due to the fast propagating gravity wave, the intermediate free surface is
corrected in the second step by modeling the horizontal pressure gradient term as semi-implicit.
The �nal velocity �eld at the new time step is then found after the free surface is corrected.
A semi-implicit �nite di�erence scheme based the FSC method has been developed and

implemented in an existing laterally averaged model called LAMFE [1, 2, 6]. Because the FSC
method for the laterally averaged �ows is unconditionally stable with respect to the gravity
waves, the vertical eddy viscosity term, and the bottom and side wall shear stresses, the semi-
implicit scheme based on this method is very e�cient and allows a large time step to be
used in model runs. Overall, the restriction on the simulation time step is mild and comes
from the explicit discretizations of the horizontal eddy viscosity terms and the convection
terms. Model runs for various shallow water scenarios have shown that the numerical scheme
presented here is stable even when Cr¿10.
The semi-implicit �nite di�erence scheme using the FSC method has been tested with an-

alytical solutions, and the simulated results agree very well with analytical solutions. The
numerical method was also applied to a real riverine estuary, where the bottom bed in the
upstream portion of the river is higher than the downstream water surface. Some laterally
averaged 2-D models must simulate the sloping portion of a river by either splitting it into
smaller segments or using a sub-model speci�cally for the sloping channel. The present nu-
merical scheme avoids these di�culties and can simulate the entire Ala�a River system from
the upstream boundary to the mouth of the estuary; no separation of the sloping channel from
the tidal reach of the river is needed. Nevertheless, for the hydrostatic pressure assumption in
the derivation to be valid, the slope of the upstream channel, whose bed elevation is higher
than the downstream water surface, must be mild. For a river with a less mild upstream slope
that is above the downstream water surface, the semi-implicit scheme presented here may not
be suitable. For such a river, a simple non-hydrostatic scheme by Stelling and van Kester
[18] can be used.
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Plate 1. Simulated velocity and salinity distributions at a low tide in the Ala�a River. Tidal
e�ects only reach to about 18 km upstream from the mouth of the estuary. The upstream

reach of the simulation domain is a sloping channel.
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Plate 2. Simulated velocity and salinity distributions at a high tide in the Ala�a River. Tides have no
e�ect on the �ow in the most upstream reach of the simulation domain.
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